1. (15 points)

Please show the mechanism for the complete acid catalyzed hydrolysis of the compound below. You are asked to show each step in the mechanism using the curved arrow convention. I have started the process for you. The hydrolysis is to be carried out in deuterated (heavy) water ($\mathrm{D}_{2} \mathrm{O}$). Please show where you would find deuterium in your product when it was isolated. It is important that you write neatly and lightly. If we can't read it, we can't grade it.

2. (15 points)

Each of the transformations below requires "a few" steps. Please show the reagents and conditions for each step.
1)

2)

3)

4)

5)

3. (5 points) Show how each of these products can be made from the same Grignard reagent. (Homework 16.4)

4. (5 points) Writing reactions with α-chloroethers can be used for the synthesis of aldehydes and ketones. (homework problem 16.27)
a) Draw the structure of the triphenyl phosphonium salt and the Wittig reagent formed form chloromethlymethyl ether $\left(\mathrm{ClCH}_{2}-\mathrm{O}-\mathrm{CH}_{3}\right]$.
b) Draw the structural formula of the product formed by treatment of the correspondng Wittig reagent with cyclopentanone. Note that the functional group is an enol ether or, alternatively, a vinyl ether.
c) Draw the structural formula of the product formed on acid-catalyzed hydrolysis of the enol ether.

Chemistry 328N

| Has the highest |
| :--- | :--- | :--- | :--- | :--- |
| equilibrium constant |
| for hydrate formation |

Chemistry 328N

7. (20 Pts) Circle the best answer for each question below.
Anst Acidic
Acetal formation is not
electrophilic aromatic
substitution
Not an ylide
electrophilic aromatic
substitution
8. (xx points)

Please complete the following reactions by supplying the missing reagents, starting materials, or products.

1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}+$ $\xrightarrow[\text { 2. dil } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {1. THF }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}+\longrightarrow \xrightarrow[\text { 2. dil } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {1. } \mathrm{THF}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
3.

4. $\mathrm{xs} \mathrm{CH}_{3} \mathrm{MgBr}+$

5. $\mathrm{xs} \mathrm{CH}_{3} \mathrm{MgBr}+$

6.

7.

8.

Chemistry 328N
9.

10. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+(\xrightarrow{\text { 2. BuLi }}$
11.

12.

13.

14.

15.

16.

Chemistry 328N
18.

19.

20

